Lecture: Moving from C Code Generation to C++ Code Generation: Basic Swap Example

Jerry Cain - Stanford

 
Previous LectureNext Lecture

Description

Lecture Description

Moving from C Code Generation to C++ Code Generation: Basic Swap Example, Code Generation for the Pointer Swap Function, Code Generation for the C++ Version Of Swap Using References, Which Are Treated as Automatically Dereferenced Pointers, Local Variables Declared as References, Difference Between References and Pointers, Effect Of Declaring a Class on Memory in the Stack, Class Methods, Which Take a "This" Pointer as An invisible First Parameter, Effect Of the "This" Pointer on the Activation Record for a Class Method, Static Class Methods (Standalone Functions), Which Don't Contain a "This" Pointer, Compilation and Linking - #Define and the Preprocessor

Course Description

Topics include: Advanced memory management features of C and C++; the differences between imperative and object-oriented paradigms; the functional paradigm (using LISP) and concurrent programming (using C and C++); brief survey of other modern languages such as Python, Objective C, and C#.

Prerequisites: Programming and problem solving at the Programming Abstractions level. Prospective students should know a reasonable amount of C++. You should be comfortable with arrays, pointers, references, classes, methods, dynamic memory allocation, recursion, linked lists, binary search trees, hashing, iterators, and function pointers. You should be able to write well-decomposed, easy-to-understand code, and understand the value that comes with good variable names, short function and method implementations, and thoughtful, articulate comments.

from course: Computer Science III: Programming Paradigms

Comments

Related Lectures