Lecture: Overlap and Energy-Match

J Michael McBride - Yale

 
Previous LectureNext Lecture

Description

Lecture Description

Professor McBride uses this lecture to show that covalent bonding depends primarily on two factors: orbital overlap and energy-match. First he discusses how overlap depends on hybridization; then how bond strength depends on the number of shared electrons. In this way quantum mechanics shows that Coulomb's law answers Newton's query about what "makes the Particles of Bodies stick together by very strong Attractions." Energy mismatch between the constituent orbitals is shown to weaken the influence of their overlap. The predictions of this theory are confirmed experimentally by measuring the bond strengths of H-H and H-F during heterolysis and homolysis.

Course Description

This is the first semester in a two-semester introductory course focused on current theories of structure and mechanism in organic chemistry, their historical development, and their basis in experimental observation. The course is open to freshmen with excellent preparation in chemistry and physics, and it aims to develop both taste for original science and intellectual skills necessary for creative research.

from course: Organic Chemistry

Comments

Related Lectures