Lecture: Multi-Objective Least-Squares

Stephen Boyd - Stanford

 
Previous LectureNext Lecture

Description

Lecture Description

Multi-Objective Least-Squares, Weighted-Sum Objective, Minimizing Weighted-Sum Objective, Regularized Least-Squares, Laplacian Regularization, Nonlinear Least-Squares (NLLS), Gauss-Newton Method, Gauss-Newton Example, Least-Norm Solutions Of Undetermined Equations

Course Description

Introduction to applied linear algebra and linear dynamical systems, with applications to circuits, signal processing, communications, and control systems.

Topics include: Least-squares aproximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm and singular value decomposition. Eigenvalues, left and right eigenvectors, and dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, state transfer, and least-norm inputs. Observability and least-squares state estimation.

Prerequisites: Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra; differential equations, Laplace transform, transfer functions. Exposure to topics such as control systems, circuits, signals and systems, or dynamics is not required, but can increase your appreciation.

from course: Introduction to Linear Dynamical Systems

Comments

Related Lectures