Lecture: Linear Functions (Continued)

Stephen Boyd - Stanford

 
Previous LectureNext Lecture

Description

Lecture Description

Linear Functions (Continued), Interpretations Of Y=Ax, Linear Elastic Structure, Example, Total Force/Torque On Rigid Body Example, Linear Static Circuit Example, Illumination With Multiple Lamps Example, Cost Of Production Example, Network Traffic And Flow Example, Linearization And First Order Approximation Of Functions

Course Description

Introduction to applied linear algebra and linear dynamical systems, with applications to circuits, signal processing, communications, and control systems.

Topics include: Least-squares aproximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm and singular value decomposition. Eigenvalues, left and right eigenvectors, and dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, state transfer, and least-norm inputs. Observability and least-squares state estimation.

Prerequisites: Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra; differential equations, Laplace transform, transfer functions. Exposure to topics such as control systems, circuits, signals and systems, or dynamics is not required, but can increase your appreciation.

from course: Introduction to Linear Dynamical Systems

Comments

Related Lectures