Lecture: DC Or Static Gain Matrix

Stephen Boyd - Stanford

 
Previous LectureNext Lecture

Description

Lecture Description

DC Or Static Gain Matrix, Discretization With Piecewise Constant Inputs, Causality, Idea Of State, Change Of Coordinates, Z-Transform, Symmetric Matrices, Quadratic Forms, Matrix Nom, And SVD, Eigenvalues Of Symmetric Matrices, Interpretations Of Eigenvalues Of Symmetric Matrices, Example: RC Circuit

Course Description

Introduction to applied linear algebra and linear dynamical systems, with applications to circuits, signal processing, communications, and control systems.

Topics include: Least-squares aproximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm and singular value decomposition. Eigenvalues, left and right eigenvectors, and dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, state transfer, and least-norm inputs. Observability and least-squares state estimation.

Prerequisites: Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra; differential equations, Laplace transform, transfer functions. Exposure to topics such as control systems, circuits, signals and systems, or dynamics is not required, but can increase your appreciation.

from course: Introduction to Linear Dynamical Systems

Comments

Related Lectures